Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.02.14.579654

ABSTRACT

Since their emergence in late 2021, SARS-CoV-2 Omicron replaced earlier variants of concern and marked a new phase in the SARS-CoV-2 pandemic. Until the end of 2023, Omicron lineages continue to circulate and continue to evolve, with new lineages causing infection waves throughout 2022 and 2023. In the population, this leads to a complex immunological exposure background, characterized by immunity derived through vaccination, in the 5th year of the pandemic in the majority of individuals followed by at least one or even multiple infections or only natural infection in individuals that did not receive a vaccine. In this study, we use eight authentic SARS-CoV-2 isolates (ancestral lineage B.1 and the seven Omicron lineages BA.1, BA.2, BA.5.1, BQ.1, XBB.1.5, EG.5.1 and JN.1.1) in a live virus neutralization assay to study immune escape in 97 human sera or plasma of different immunological backgrounds (vaccination, hybrid immunity due to one or two natural infections and natural infection without vaccination in children and adults). We showed a gradually increasing immune escape after vaccination and hybrid immunity in from B.1 to BA.1/BA.2 to BA.5.1 to BQ.1 to XBB.1.5 to EG.5.1, but remarkably, no more enhanced immune escape of JN.1.1 compared to EG.5.1, with the latter two showing almost identical neutralization titers in individuals with hybrid immunity due to one or more infections. In vaccinated but never infected individuals, neutralization was markedly reduced or completely lost for XBB.1.5., EG.5.1 and JN.1.1, while in those with hybrid immunity, titers were reduced but almost all sera still showed some degree of neutralization. After a single infection without vaccination, reduced or complete loss of neutralization occurred for BQ.1, XBB.1.5, EG.5.1 and JN.1.1 compared to BA.1/BA.2. Furthermore, we observed that, although absolute titers differed between groups, the pattern of immune escape between the variants remains comparable across groups, with strongest loss of neutralization for BQ.1, XBB.1.5, EG.5.1 and JN.1.1 was observed across the different immunological backgrounds. Our results show gradually increasing antibody escape of evolving Omicron lineages over the last two years of Omicron circulation until variant EG.5.1, but not anymore for the currently dominant lineages JN.1.1, suggesting other mechanisms than immune escape to be behind the rapid global emergence of JN.1.

2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.09.27.559689

ABSTRACT

The antigenic evolution of SARS-CoV-2 requires ongoing monitoring to judge the immune escape of newly arising variants. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal sera. We compared 18 datasets generated using human, hamster, and mouse sera, and six different neutralization assays. Titer magnitude was lowest in human, intermediate in hamster, and highest in mouse sera. Fold change, immunodominance patterns and antigenic maps were similar among sera. Most assays yielded similar results, except for differences in fold change in cytopathic effect assays. Not enough data was available for conclusively judging mouse sera, but hamster sera were a consistent surrogate for human first-infection sera.

3.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.03.24.23287677

ABSTRACT

Mucosal antibodies play a key role in the protection against SARS-CoV-2 infection in the upper respiratory tract, and potentially in limiting virus replication and therefore onward transmission. While systemic immunity to SARS-CoV-2 is well understood, little is known about the antibodies present on the nasal mucosal surfaces. In this study, we evaluated SARS-CoV-2 mucosal antibodies in response to infection, vaccination, or a combination of both. Paired nasal fluid and serum samples were collected from 136 individuals, which include convalescent, vaccinated, or breakthrough infections. We detected a high correlation between IgG responses in serum and nasal fluids, which were higher in both compartments in vaccinated compared to convalescent participants. Contrary, nasal and systemic SARS-CoV-2 IgA responses were weakly correlated, indicating a compartmentalization between the local and systemic IgA responses. SARS-CoV-2 secretory component IgA (s-IgA) antibodies, present exclusively on mucosal surfaces, were detected in the nasal fluid only in a minority of vaccinated subjects and were significantly higher in previously infected individuals. s-IgA binding antibodies showed significant correlation with neutralizing activity of nasal fluids against SARS-CoV-2 ancestral B.1 and Omicron-BA.5 variant, indicating that s-IgA is the crucial contributor to neutralization in the nasal mucosa. Neutralization against both SARS-CoV-2 strains was higher in the mucosa of subjects with previous SARS-CoV-2 infections compared to vaccinated participants. In summary, we demonstrate that currently available vaccines elicit strong systemic antibody responses, but SARS-CoV-2 infection generates more potent binding and neutralizing mucosal antibodies. Our results support the importance to develop SARS-CoV-2 vaccines that elicit mucosal antibodies.


Subject(s)
COVID-19 , Breakthrough Pain , Severe Acute Respiratory Syndrome
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.04.510352

ABSTRACT

SARS-CoV-2's genetic plasticity has led to several variants of concern (VOCs). Here we studied replicative capacity for seven SARS-CoV-2 isolates (B.1, Alpha, Beta, Gamma, Delta, Zeta, and Omicron BA.1) in primary reconstituted airway epithelia (HAE) and lung-derived cell lines. Furthermore, to investigate the host range of Delta and Omicron compared to ancestral SARS-CoV-2, we assessed replication in 17 cell lines from 11 non-primate mammalian species, including bats, rodents, insectivores and carnivores. Only Omicron's phenotype differed in vitro, with rapid but short replication and efficient production of infectious virus in nasal HAEs, in contrast to other VOCs, but not in lung cell lines. No increased infection efficiency for other species was observed, but Delta and Omicron infection efficiency was increased in A549 cells. Notably replication in A549 and Calu3 cells was lower than in nasal HAE. Our results suggest better adaptation of VOCs towards humans, without an extended host range.


Subject(s)
Infections
5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.09.22276142

ABSTRACT

Background: We evaluate the diagnostic performance of dried blood microsampling combined with a high-throughput microfluidic nano-immunoassay (NIA) for the identification of anti-SARS-CoV-2 Spike IgG seropositivity. Methods: We conducted a serological study among 192 individuals with documented prior SARS-CoV- 2 infection and 44 SARS-CoV-2 negative individuals. Participants with prior SARS-CoV-2 infection had a long interval of 11 months since their qRT-PCR positive test. Serum was obtained after venipuncture and tested with an automated electrochemiluminescence anti-SARS-CoV-2 S total Ig reference assay, a commercial ELISA anti-S1 IgG assay, and the index test NIA. 109 participants from the positive co- hort and 44 participants from the negative cohort also participated in capillary blood collection using three microsampling devices: Mitra, repurposed glucose test strips, and HemaXis. Samples were dried, shipped by regular mail, extracted, and measured with NIA. Findings: Using serum samples, we achieve a clinical sensitivity of 98.33% and specificity of 97.62% on NIA, affirming the high performance of NIA in participants 11 months post infection. Combining microsampling with NIA, we obtain a clinical sensitivity of 95.05% using Mitra, 61.11% using glucose test strips, 83.16% using HemaXis, and 91.49% for HemaXis after automated extraction, without any drop in specificity. Interpretation: High sensitivity and specificity was demonstrated when testing micro-volume capillary dried blood samples using NIA, which is expected to facilitate its use in large-scale studies using home- based sampling or samples collected in the field. Funding: Swiss National Science Foundation NRP 78 Covid-19 grant 198412 and Private Foundation of the Geneva University Hospital.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
6.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.02.22274436

ABSTRACT

Background: The rapid worldwide spread of the mildly pathogenic SARS-CoV-2 Omicron variant has led to the suggestion that it will induce levels of collective immunity that will help putting an end to the COVID19 pandemics. Methods: Convalescent serums from non-hospitalized individuals previously infected with Alpha, Delta or Omicron BA.1 SARS-CoV-2 or subjected to a full mRNA vaccine regimen were evaluated for their ability to neutralize a broad panel of SARS-CoV-2 variants. Findings: Prior vaccination or infection with the Alpha or to a lesser extent Delta strains conferred robust neutralizing titers against most variants, albeit more weakly against Beta and even more Omicron. In contrast, Omicron convalescent serums only displayed low level of neutralization activity against the cognate virus and were unable to neutralize other SARS-CoV-2 variants. Interpretation: Moderately symptomatic Omicron infection is only poorly immunogenic and does not represent a substitute for vaccination.


Subject(s)
COVID-19
7.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1293087.v1

ABSTRACT

Viral load (VL) is one determinant of secondary transmission of SARS-CoV-2. Emergence of variants of concerns (VOC) Alpha and Delta was ascribed, at least partly, to higher VL. Furthermore, with parts of the population vaccinated, knowledge on VL in vaccine-breakthrough infections is crucial. As RNA VL is only a weak proxy for infectiousness, studies on infectious virus presence by cell culture isolation are of importance. We assessed nasopharyngeal swabs of COVID-19 patients for quantitative infectious viral titres (IVT) by focus-forming assay and compared to overall virus isolation success and RNA genome copies. We assessed IVTs during the first 5 symptomatic days in a total of 440 patients: unvaccinated individuals infected with pre-VOC SARS-CoV-2 (n= 118) or Delta (n= 127) and vaccine-breakthrough infections with Delta (n= 133) or Omicron (n=62). Correlation between RNA copy number and IVT was low for all groups. No correlation between IVTs and age or sex was seen. We observed higher RNA genome copies in pre-VOC SARS-CoV-2 compared to Delta, but significantly higher IVTs in Delta infected individuals. Vaccinated Delta infected individuals had significantly lower RNA genome copies and IVTs compared to unvaccinated subjects and cleared virus faster. In addition, vaccinated individuals with Omicron infection had lower IVTs in comparison to Delta breakthrough infections. Quantitative IVTs can give detailed insights into virus shedding kinetics. Vaccination was associated with lower infectious titres and faster clearance for Delta, showing that vaccination would also lower transmission risk. Omicron vaccine-breakthrough infections did not show elevated IVTs compared to Delta, suggesting that other mechanisms than increased VL contribute to the high infectiousness of Omicron.


Subject(s)
COVID-19
8.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.10.22269010

ABSTRACT

Background Viral load (VL) is one determinant of secondary transmission of SARS-CoV-2. Emergence of variants of concerns (VOC) Alpha and Delta was ascribed, at least partly, to higher VL. Furthermore, with parts of the population vaccinated, knowledge on VL in vaccine-breakthrough infections is crucial. As RNA VL is only a weak proxy for infectiousness, studies on infectious virus presence by cell culture isolation are of importance. Methods We assessed nasopharyngeal swabs of COVID-19 patients for quantitative infectious viral titres (IVT) by focus-forming assay and compared to overall virus isolation success and RNA genome copies. We assessed IVTs during the first 5 symptomatic days in a total of 384 patients: unvaccinated individuals infected with pre-VOC SARS-CoV-2 (n= 118) or Delta (n= 127) and vaccine breakthrough infections with Delta (n= 121) or Omicron (n=18). Findings Correlation between RNA copy number and IVT was low for all groups. No correlation between IVTs and age or sex was seen. We observed higher RNA genome copies in pre-VOC SARS-CoV-2 compared to Delta, but significantly higher IVTs in Delta infected individuals. Vaccinated Delta infected individuals had significantly lower RNA genome copies and IVTs compared to unvaccinated subjects and cleared virus faster. In addition, vaccinated individuals with Omicron infection had comparable IVTs to Delta breakthrough infections. Interpretation Quantitative IVTs can give detailed insights into virus shedding kinetics. Vaccination was associated with lower infectious titres and faster clearance for Delta, showing that vaccination would also lower transmission risk. Omicron vaccine-breakthrough infections did not show elevated IVTs compared to Delta, suggesting that other mechanisms than increase VL contribute to the high infectiousness of Omicron. Funding This work was supported by the Swiss National Science Foundation 196644, 196383, NRP (National Research Program) 78 Covid-19 Grant 198412, the Fondation Ancrage Bienfaisance du Groupe Pictet and the Fondation Privée des Hôpitaux Universitaires de Genève.


Subject(s)
COVID-19
9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.28.21268491

ABSTRACT

Emerging SARS-CoV-2 variants of concern/interest (VOC/VOI) raise questions about effectiveness of neutralizing antibodies derived from infection or vaccination. As the population immunity to SARS-CoV-2 has become more complex due to prior infection and/or vaccination, understanding the antigenic relationship between variants is needed. Here, we have assessed in total 104 blood specimens from convalescent individuals after infection with early-pandemic SARS-CoV-2 (pre-VOC) or with Alpha, Beta, Gamma or Delta, post-vaccination after double-dose mRNA-vaccination and break through infections due to Delta or Omicron. Neutralization against seven authentic SARS-CoV-2 isolates (B.1, Alpha, Beta, Gamma, Delta, Zeta, Omicron) was assessed by plaque-reduction neutralization assay. We found highest neutralization titers against the homologous (previously infecting) variant, with lower neutralization efficiency against heterologous variants. Significant loss of neutralization for Omicron was observed but to a varying degree depending on previously infecting variant (23.0-fold in Beta-convalescence up to 56.1-fold in Alpha-convalescence), suggesting that infection-derived immunity varies, but independent of the infecting variant is only poorly protective against Omicron. Of note, Zeta VOI showed also pronounced escape from neutralization of up to 28.2-fold in Alpha convalescent samples. Antigenic mapping reveals both Zeta and Omicron as separate antigenic clusters. Double dose vaccination showed robust neutralization for Alpha, Beta, Gamma, Delta and Zeta, with fold-change reduction of only 2.8 (for Alpha) up to 6.9 (for Beta). Escape from neutralization for Zeta was largely restored in vaccinated individuals, while Omicron still showed a loss of neutralization of 85.7-fold compared to pre-VOC SARS-CoV-2. Combined immunity from infection followed by vaccination or vaccine breakthrough infection showed highest titers and most robust neutralization for heterologous variants. Breakthrough infection with Delta showed only 12.5-fold reduced neutralization for Omicron, while breakthrough infection with Omicron showed only a 1.5-fold loss for Delta, suggests that infection with antigenically different variants can boost immunity for antigens closer to the vaccine strain. Antigenic cartography showed also a tendency towards broader neutralizing capacity for heterologous variants. We conclude that the complexity of background immunity needs to be taken into account when assessing new VOCs. Development towards separate serotypes such as Zeta was already observed before Omicron emergence, thus other factors than just immune escape must contribute to Omicrons rapid dominance. However, combined infection/vaccination immunity could ultimately lead to broad neutralizing capacity also against non-homologous variants.

10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.18.21268018

ABSTRACT

The emergence of novel SARS-CoV-2 variants of concern (VOCs) requires investigation of a potential impact on diagnostic performance, especially on Antigen-detecting rapid antigenic tests (Ag-RDT). Although anecdotal reports have been circulating that Omicron is in principle detected by several Ag-RDTs, no published data are a yet available for the newly emerged Omicron variant. Here, we have performed an analytical sensitivity testing with cultured virus in seven Ag-RDTs for their sensitivity to Omicron compared to data earlier obtained on VOCs Alpha, Beta Gamma and Delta and a pre-VOC isolate of SARS-CoV-2. Overall, we have found a tendency towards lower sensitivity for Omicron compared to pre-VOC SARS-CoV-2 and the other VOCs across tests. Importantly, while analytical testing with cultured virus may be a proxy for clinical sensitivity, is not a replacement for clinical evaluations which are urgently needed for Ag-RDT performance in Omicron-infected individuals.

11.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.26.21265509

ABSTRACT

Background Twenty-one months into the pandemic, the extent to which young children get infected and transmit SARS-CoV-2 in school settings remains controversial, in particular with variants of concern. We report a prospective epidemiological, virological and serological investigation of a SARS-CoV-2 outbreak in a primary school in Geneva, Switzerland, in April-May 2021. Methods This outbreak investigation is part of a longitudinal, prospective, primary school-based surveillance study (SEROCoV-Schools). It involved repeated testing of pupils and teachers and household members of participants who tested positive. Rapid antigen tests and/or real-time reverse transcription polymerase chain reaction were performed at Day 0-2 and Day 5-7; serologies on dried capillary blood samples were performed at Day 0-2 and Day 30. Contact tracing interviews and SARS-CoV-2 whole genome sequencing were carried out for positive cases. Results This SARS-CoV-2 outbreak caused by the Alpha variant involved 20 children aged 4 to 6 years from 4 classes, 2 teachers and 3 household members. Infection attack rates were between 11.8 and 62.0% among pupils from the 4 classes, 22.2% among teachers and 0% among non-teaching staff. Secondary attack rate among household members was 10.7%. Symptoms were reported by 63% of infected children, 100% of teachers and 66.7% of household members. All analysed sequences but one showed 100% identity. Serological tests detected 8 seroconversions unidentified by SARS-CoV-2 virological tests. Conclusions This study confirmed child-to-child and child-to-adult transmission of the infection. SARS-CoV-2 can spread rapidly between children and adults in school settings, and is thereby introduced into households. Effective measures to limit transmission in schools have the potential to reduce the overall community circulation.

12.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.06.21264535

ABSTRACT

Global concerns arose as the emerged and rapidly spreading SARS-CoV-2 Delta variant. To date, few data on routine diagnostic performance for Delta are available. Here, we investigate the analytical performance of eleven commercially available antigen-detecting rapid diagnostic tests (Ag-RDTs) for Delta VOC in comparison with current and earlier VOCs (Alpha, Beta and Gamma) and early pandemic variant using cultured SARS-CoV-2. Comparable sensitivity was observed for Delta for the majority of Ag-RDTs.

13.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.31.21258111

ABSTRACT

Several SARS-CoV-2 variants of concern/interest (VOC/VOI) emerged recently, with VOCs outcompeting earlier lineages on a global scale. To date, few data on routine diagnostic performance for VOC/VOIs are available. Here, we investigate the analytical performance of nine commercially available antigen-detecting rapid diagnostic tests (Ag-RDTs) for VOC B.1.1.7, B.1.351, P.1 and VOI P.2 with cultured SARS-CoV-2. Comparable or higher sensitivity was observed for VOC/VOI compared to a non-VOC/VOI early-pandemic virus for all Ag-RDTs.

14.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.18.21257110

ABSTRACT

Comparison of virus isolation success from clinical samples across a range of viral loads inoculated in parallel on Vero E6 and human airway epithelia (HAE) showed lower success of virus isolation in HAE, suggesting an overestimation of actual infectiousness in humans using Vero E6 cell lines, commonly considered as reference.


Subject(s)
Airway Obstruction
15.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.28.21255760

ABSTRACT

Whether smoking exacerbates Coronavirus disease 2019 is still debated. Ex-vivo Infection of reconstituted epithelial tissues from smoker versus non-smoker donors suggested comparable susceptibility to SARS-CoV-2 in epithelia from both groups.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
16.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.15.21255577

ABSTRACT

ABSTRACT Importance. Antigen-based rapid diagnostic tests (RDTs) have shown good sensitivity for SARS-CoV-2 detection in adults and are used in children despite the lack data from children. Objective. We evaluated the diagnostic performance of the PanbioTM-COVID-19 Ag Rapid Test Device (P-RDT) in symptomatic and asymptomatic children against reverse-transcription polymerase chain reaction (RT-PCR) on nasopharyngeal swabs (NPS). Design. Prospective diagnostic study from 11.2020 to 03.2021 Setting. Single-center Participants. Consecutive symptomatic and asymptomatic participants 0-16yo Intervention. Two NPS for both RT-PCR and P-RDT Main outcome. P-RDT sensitivity and specificity Results. Eight-hundred and twenty-two participants completed the study, of which 533 (64.9%) were symptomatic. Among the 119 (14.5%) RT-PCR positive patients, the overall P-RDT sensitivity was 0.66 (95%CI 0.57-0.74). Mean viral load (VL) was higher among P-RDT positive than negative ones (p<0.001). Sensitivity was 0.87 in specimens with VL>1.0E6 copies/mL (95%CI 0.87-1.00), which is the accepted cut-off for the presence of infectious virus, and decreased to 0.67 (95%CI 0.59-0.76) for specimens >1.0E3 copies/mL. Among symptomatic participants, the P-RDT displayed a sensitivity of 0.73 (95%CI 0.64-0.82), which peaked at 1.00 at 2 days post onset of symptoms (DPOS; 95%CI 1.00-1.00), then decreased to 0.56 (95%CI 0.23-0.88) at 5 DPOS. There was a trend towards lower P-RDT sensitivity in symptomatic children <12 years (0.62 [95%CI 0.45-0.78]) versus > 12 years (0.80 [95%CI 0.69-0.91]; p=0.09). VL which was significantly lower in asymptomatic participants than in symptomatic ones (p<0.001). The P-RDT displayed a sensitivity of 0.43 (95%CI 0.26-0.61). Specificity was 1.00 in symptomatic and asymptomatic children (95%CI 0.99-1.00). Conclusion and relevance. The overall respective 73% and 43% sensitivities of P-RDT in symptomatic and asymptomatic children was below the 80% cut-off recommended by the World Health Organization. These findings are likely explained by lower VLs in children at the time of diagnosis. As expected, we observed a direct correlation between VL and P-RDT sensitivity as well as variation of sensitivity according to DPOS, a major determinant of VL. These data highlight the limitations of RDTs both in symptomatic and asymptomatic children, with the potential exception in early symptomatic children >12yrs where sensitivity reached 80%.


Subject(s)
COVID-19
17.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.16.21253710

ABSTRACT

Serologic studies have been critical in tracking the evolution of the COVID-19 pandemic. The reliability of serologic studies for quantifying the proportion of the population that have been infected depends on the extent of antibody decay as well as on assay performance in detecting both recent and older infections. Data on anti-SARS-CoV-2 antibodies persistence remain sparse, especially from infected individuals with few to no symptoms. In a cohort of mostly mild/asymptomatic SARS-CoV-2-infected individuals tested with three widely-used immunoassays, antibodies persisted for at least 8 months after infection, although detection depended on immunoassay choice, with one of them missing up to 40% of past infections. Simulations reveal that without appropriate adjustment for time-varying assay sensitivity, seroprevalence surveys may underestimate infection rates. As the immune landscape becomes more complex with naturally-infected and vaccinated individuals, assay choice and appropriate assay-performance-adjustment will become even more important for the interpretation of serologic studies.


Subject(s)
COVID-19
18.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.05.21252520

ABSTRACT

In December 2020, the United Kingdom (UK) reported a SARS-CoV-2 Variant of Concern (VoC) which is now coined B.1.1.7. Based on the UK data and later additional data from other countries, a transmission advantage of around 40-80% was estimated for this variant. In Switzerland, since spring 2020, we perform whole genome sequencing of SARS-CoV-2 samples obtained from a large diagnostic lab (Viollier AG) on a weekly basis for genomic surveillance. The lab processes SARS-CoV-2 samples from across Switzerland. Based on a total of 7631 sequences obtained from samples collected between 14.12.2020 and 11.02.2021 at Viollier AG, we determine the relative proportion of the B.1.1.7 variant on a daily basis. In addition, we use data from a second lab (Dr Risch) screening all their samples for the B.1.1.7 variant. These two datasets represent 11.5 % of all SARS-CoV-2 confirmed cases across Switzerland during the considered time period. They allow us to quantify the transmission advantage of the B.1.1.7 variant on a national and a regional scale. Taking all our data and estimates together, we propose a transmission advantage of 49-65% of B.1.1.7 compared to the other circulating variants. Further, we estimate the effective reproductive number through time for B.1.1.7 and the other variants, again pointing to a higher transmission rate of B.1.1.7. In particular, for the time period 01.01.2021-17.01.2021, we estimate an average reproductive number for B.1.1.7 of 1.28 [1.07-1.49] while the estimate for the other variants is 0.83 [0.63-1.03], based on the total number of confirmed cases and our Viollier sequencing data. Switzerland tightened measures on 18.01.2021. A comparison of the empirically confirmed case numbers up to 20.02.2021 to a very simple model using the estimates of the reproductive number from the first half of January provides indication that the rate of spread of all variants slowed down recently. In summary, the dynamics of increase in frequency of B.1.1.7 is as expected based on the observations in the UK. Our plots are available online and constantly updated with new data to closely monitor the changes in absolute numbers.

19.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.12.21251298

ABSTRACT

AimsUnravelling autoimmune targets triggered by SARS-CoV-2 infection may provide crucial insights in the physiopathology of the disease and foster the development of potential therapeutic candidate targets and prognostic tools. We want to determine whether SARS-CoV-2 exposure could trigger a humoral response against apolipoprotein A-1 (anti-apoA-1 IgG) through molecular mimicry and assess its relationship to patient prognosis. Methods and ResultsAnti-Spike domain 1 (SD1) IgGs, anti-apoA-1 IgGs and against mimic peptides, as well as cytokines were assessed by immunoassays on a case-control (n=101), an intensive care unit (ICU; n=126) with a 28-days follow-up, and a general population cohort (n=663) with available samples in the pre and post-pandemic period. Linear sequence homologies and antibodies cross-reactivity between apoA-1, TLR2, and Spike epitopes were identified. Overall, anti-apoA-1 IgG levels were higher in COVID-19 patients or anti-SARS-CoV-2 seropositive individuals than in healthy donors or anti-SARS-CoV-2 seronegative individuals (p<0.0001). Significant and similar associations were noted between anti-apoA-1, anti-SARS-CoV-2 IgG, cytokines, and lipid profile. In ICU patients, anti-SARS-CoV-2 and anti-apoA-1 seroconversion rates displayed similar 7-days kinetics, reaching 82% for anti-apoA-1 seropositivity. C-statistics (CS) indicated that anti-Spike/TLR2 mimic-peptide IgGs displayed a significant prognostic accuracy for overall mortality at 28 days (CS: 0.64; p=0.02). In the general population, SARS-CoV-2 exposure increased baseline anti-apoA-1 IgG levels. ConclusionsCOVID-19 induces a marked humoral response against the major protein of high-density lipoproteins. As a correlate of poorer prognosis in other clinical settings, such autoimmunity signatures may relate to long-term COVID-19 prognosis assessment and warrant further scrutiny in the current COVID-19 pandemic.


Subject(s)
COVID-19 , Poult Enteritis Mortality Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL